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The domain configuration and ferroelectric property of mode relaxor ferroelectrics (RFEs) are
investigated by performing a two-dimensional Monte Carlo simulation based on the
Ginzburg-Landau theory on ferroelectric phase transitions and the defect model as an approach
to the electric dipole configuration in relaxor ferroelectrics. The evolution of domain pattern
and domain wall configuration with lattice defect concentration and temperature is simulated,
predicting a typical two-phase coexisted microstructure consisting of ferroelectric regions
embedded in the matrix of a paraelectric phase. The diffusive ferroelectric transitions in terms
of the spontaneous polarization hysteresis and dielectric susceptibility as a function of
temperature and defect concentration are successfully revealed by the simulation,
demonstrating the applicability of the defect model and the simulation algorithm. A qualitative
consistency between the simulated results and the properties of proton-irradiated ferroelectric
copolymer is presented. C© 2006 Springer Science + Business Media, Inc.

1. Introduction
The role of defects in ferroelectrics (FEs) has been one of
the fundamental issues in physics of ferroelectrics. While
most studies related to defects in ferroelectrics deal with
domain boundary, twin structure, anti-phase boundary and
dislocations etc, a comprehensive knowledge of these de-
fects and their impact on the materials property would
be important for materials processing and property op-
timization [1, 2]. Here, we focus on a special type of
crystal defects which are believed to be responsible for
the relaxor-like behaviors in some doped ferroelectrics
[3–12]. These defects can be either impurity atoms dis-
tributed randomly in the lattice or off-center dopant ions
which generate the so-called internal random fields or
random bonds, or even a frustration of long-range order-
ing state due to some reasons [9]. Although it remains
challenging to identify directly the core configuration and
physical behaviors of these defects, extensive studies on
relaxor ferroelectrics (RFEs) have provided a sound basis
for establishing the essential roles of these defects [7–16].
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Therefore, it becomes natural to correlate the existence of
lattice defects with the abnormal ferroelectric and dielec-
tric behaviors in RFEs.

It is well known that RFEs exhibit some features
not often observed in normal FEs, such as diffusive
phase transitions, strong frequency dependence of
dielectric susceptibility which corresponds to a broad
spectrum of electric-dipole relaxation times, narrow and
frequency-dependent hyeteresis in the paraelectric state
and weak FE-hysteresis below the FE transition point
(Curie point) Tc, in addition to the high dielectric constant
and excellent electromechanical performance [3, 4]. It is
now believed that these abnormal behaviors are related
to the coexistence of two phases in the nano-scale,
i.e. well aligned dipolar micro-regions embedded in
a matrix of paraelectric (PE) phase upon a decrease
of temperature T towards Tc [14–16]. Such a picture
of two-phase coexistence was employed in several
models to explain the abnormal property of RFEs. The
well-documented models include the compositional
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inhomogeneity scheme [17], the superparaelectric model
[3], and the dipole-glass model [15], which describe the
dipole-configuration of RFEs in a framework of standard
dipole interactions coupled with an internal random field.

The role of defects mentioned above is considered in
the compositional inhomogeneity model in which the type
of defects can be impurity atom or dopant ion [12]. For the
former, the impurity atoms in the lattice are viewed as dis-
ordered (random) static defects coupled locally with the
transformational mode which is responsible for a stable
dipole. Therefore, the defects may change the magnitude
of local dipoles from site to site, by suppressing the dipole
moment. For the latter, a model was proposed by Vug-
meister et al. [9], where a highly polarizable PE host lat-
tice with a displacive dielectric response to electric field E
is considered. If this lattice is doped by off-center dopants,
a local dipole will appear and the local dopant may occupy
one of the crystallographically equivalent off-center sites
around the unit cell center, and the resultant dipole mo-
ment may align along one of the equivalent vectors. Here
it should be pointed out that the off-center displacement
would lead to either a suppression or an enhancement of
local dipole moment. Thus a consideration of two types
of defects in lattice may be necessary: those defects that
would suppress local dipoles magnitude (type-I) and those
that may suppress or enhance local dipoles in a random
manner (type-II). While there is not much direct evidence
on the defects associated with the random-field scheme,
some interesting experiments on ferroelectric copolymers
had been performed recently, where the material was ir-
radiated by ions such that the system was converted from
a normal FE phase into two coexisting phases: a normal
FE and a RFE phase [18–20]. The irradiated regions may
lose their ferroelectricity and can be viewed as containing
induced defects.

Recently, a thermodynamic description of the FE lat-
tice with impurity-induced defects was developed by Su
et al. [12] and Semenovskaya et al. [21], who included
the effect of local dipole fluctuations induced by impurity
ions in the Landau energy. Furthermore, the two-phase
coexisted pattern may also depend on mechanisms other
than defects, such as the long-range dipole-dipole inter-
action, gradient energy due to alignment misorientation
and long-range elastic interaction [21]. It is necessary to
consider these mechanisms in the theoretical approach.

In this paper, we summarize our recent Monte Carlo
(MC) simulation on the lattice configuration of electric
dipoles and the dielectric property in a FE lattice with
local lattice defects [22–24]. The defects coupled into the
lattice are identified as two types as mentioned above: one
type is those intended to suppress the local dipoles (type-I)
and the other supposed to suppress or enhance the dipoles
in a random manner (type-II). The effect of both types
of defects on the domain configurations and dielectric
(ferroelectric) behaviors of RFEs will be simulated. We
shall then compare our simulations on the effect of type-I

defects with the experimental data on proton-irradiated
poly (vinylidene fluoride-trifluoroethylene) 70/30 mol%
copolymer (P(VDF-TrFE)) [25]. The reason is clear, since
the proton-irradiation results in suppression of electric
dipole.

The remaining part of this paper is organized as follows.
In Section 2 the thermodynamic model on a defective fer-
roelectric lattice system with a cubic (square)-tetragonal
(rectangle) ferroelectric transition upon temperature de-
creasing will be presented, followed by the MC-algorithm
of simulation. The main results of the simulation and dis-
cussion on the significant effect of the two types of defects
on the domain configuration and ferroelectric (dielectric)
property of the lattice will be given in Section 3 to Section
5, followed by a short conclusion in Section 6.

2. Model and procedure of simulation
The MC simulation is performed on a two-dimensional
(2D) L×L lattice with the periodic boundary conditions
applied, where the PE phase takes the square configu-
ration and FE phase the rectangular one. Basically, a
three-dimensional lattice with a cubic-tetragonal transi-
tion should be employed for a reliable simulation, how-
ever, the computational capacity required for such a sim-
ulation is extremely big. Moreover, because we do not
focus much on the critical phenomena associated with the
ferroelectric phase transitions, the effect of finite lattice
size may not be significant here to invalidate the main
conclusion from the 2D simulation. We once employed a
16×16×16 cubic lattice for a pre-simulation and did not
find significant difference of the simulated results (e.g.
dielectric susceptibility and ferroelectric property to be
defined below) from those we obtained for a 2D lattice
of L∼64. In Fig. 1 we present the simulated dielectric
susceptibility as a function of temperature T for a 3D lat-
tice with L = 16, and two 2D lattices with L = 64 and
128, respectively. No significant difference between the
several lattices is found in terms of the dielectric behav-
ior. Therefore, all of our simulations reported below will
be performed on a 2D lattice. Although the lattice for
copolymer P(VDF-TrFE) cannot be viewed as a square in
a strict sense, the thermodynamic approach may not be
sensitive to the crystal symmetry and details of the lattice
structure. Therefore, we ignore the crystallographic dif-
ference when we compare the simulated results with the
experiments.

2.1. Ginzburg-Landau model of normal
ferroelectric lattice

The model starts from the Ginzburg-Landau approach to
normal ferroelectric lattice with a square-rectangle tran-
sition. For each lattice site, a dipole vector P is imposed
with its moment and orientation defined by the energy
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Figure 1 Simulated dielectric susceptibility as a function of temperature T
for three lattices (3D lattice with L = 16, 2D lattices with L = 64 and 128,
respectively). Q = 4. For details see text.

minimization. We define P = (Px(r), Py(r)) where Px and
Py are the two components along x-axis and y-axis, re-
spectively. For the energy, we consider the contributions
from the Landau double-well potential, the long-range
dipole-dipole interaction and gradient energy associated
with domain walls. For normal FE crystals the ferroelas-
tic property can not be ignored [26]. However, this effect
may not be important for a two-phase coexisted lattice
like RFEs, because the actual dipole-ordered regions are
nanometers in size and well-separated by the surrounding
paraelectric phase whose elastic energy can be ignored.

The Landau double-well potential fL can be written as
[26]:

fL (Pi ) = A1
(
P2

x + P2
y

) + A11
(
P4

x + P4
y

)

+A12 P2
x P2

y + A111
(
P6

x + P6
y

)
(1)

where subscript i refers to lattice site i, A1, A11, A12 and
A111 are the energy coefficients, respectively. For normal
FEs, A1 > 0 favors a stable or meta-stable PE phase while
a first-order ferroelectric transition will occur if A1<0. In
fact, one has A1 = 1/2ε0χ for the PE phase where ε0 is the
vacuum permitivity and χ the dielectric susceptibility of
the local lattice. In the present model, the dipole vector is
assumed to take one of Q orientations, where Q is treated
as a variable. For a square-rectangle transition considered
here, Q = 4 if one only looks at the Landau energy. How-
ever, other orientation states may be chosen too if other
dipole interactions are considered. Each dipole is deter-
mined by the energy minimization. We shall simulate the
effect of Q on the domain configuration, but in most cases
we choose Q=4, i.e. four equivalent orientations: [1, 0],
[−1, 0], [0, 1] and [0, −1] are allowed, where orientation
[1, 0] refers to the horizontal-right x-axis, and [0, 1] refers
to the vertical-up y-axis.

If there exists a spatial distribution of the dipoles (refer
to either moment or orientation), an additional energy is
generated, i.e. the so-called gradients of the polarization

field induced by the fluctuation. For a 2D lattice, it can be
written as [21, 26]:

fG(Pi, j ) = 1

2
G11

(
P2

x,x + P2
y,y

) + G12 Px,x Py,y

+ 1

2
G44(Px,y + Py,x )2

+ 1

2
G ′

44(Px,y − Py,x )2 (2)

wherePi, j = ∂ Pi/∂x j . Since parameters G11, G12, G44

and G′
44 are all positive, in most cases this energy term

is positive, which means that any dipole fluctuation ei-
ther in moment or in orientation is not favored. The role
of this gradient term is obviously opposite to that of the
dipole-dipole interaction to be described below, i.e. ferro-
electric ordering is preferred by this term. In addition, the
dipole-dipole interaction is long-ranged and it should be
considered for an inhomogeneous system. In the SI unit,
the energy for site i can be written as [26]:

fdip(Pi ) = 1

8πε0χ

∑

〈 j〉

[
P(ri ) · P(r j )

|ri − r j |3

−3[P(ri ) · (ri − r j )][P(r j ) · (ri − r j )]

|ri − r j |5
]

(3)

where 〈j〉 represents a summation over all sites within a
circle region centered at site i with radius R, parameters
ri, rj, P(ri) and P(rj) here should be vectors, ri and rj are
the coordinates of sites i and j, respectively. In a strict
sense, R should be infinite but an effective cut-off at R =
8 is taken in our simulation (the as-induced error from this
cut-off is less than 2% in terms of the relative accuracy).
The total dipole-dipole interaction energy for the whole
lattice can be written in the integration form:

Fdip =
∫

d3ri fdip(Pi )

= 1

8πε0χ

∫ ∫ 3

ri d
3r j

[
P(ri ) · P(r j )

|ri − r j |3

−3[P(ri ) · (ri − r j )][P(r j ) · (ri − r j )]

|ri − r j |5
]

(4)

It is clearly seen that a minimizing of Fdip favors the
alignment of dipoles in the head-to-tail form. The en-
ergy for an anti-parallel dipole alignment between two
neighboring rows is slightly lower than that for a parallel
alignment between the two rows. A compatible compe-
tition between fdip and fG is responsible for dominance
of either 90◦-domain walls or 180◦-walls. When fdip is
slightly larger than fG, 180◦-walls dominate. Finally, the
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electrostatic energy induced by an external electric field
is:

fE (Pi ) = −Pi · E (5)

where E is external electric field, and Pi and E are vectors.
In our simulation, vector E takes the [1, 0] direction. The
Hamiltonian for the system is:

H =
∑

<i>

fL + fG + fdip + fE (6)

where <i> refers to the summation over the whole lattice.

2.2. Effect of defects
Introduction of randomly distributed defects imposes a
spatial distribution for the coefficients A1, A11, A12 and
A111 in the Landau energy Equation 1. Consequently, the
other three terms become defect-dependent too. We also
assume that only A1 is affected by the defects and the
other three coefficients remain unchanged [21]. That is:

A1(ri ) = A10 + bm · c
A10 = α(T − T0), α > 0 (7)

where α > 0 is a materials constant, T is the temperature,
A10 is the coefficient A1 in Equation 1, T0 is the critical
temperature for a normal FE crystal with first-order phase
transition features, c takes 0 or 1 to represent a perfect site
or a defective site, bm is the coefficient characterizing the
influence of defects on T0 and can be written as:

bm = −α
dT 0(C0)

dC0
(8)

where C0 is the average concentration of defects, which
means that L2C0 lattice sites are occupied by defects. In
the present model, the unit of temperature is scaled by
the energy coefficients that appear in Equation 1. The
unit of external electric field E0 is also scaled by the
energy coefficients, considering that Equation 5 has the
unit of energy. Therefore, the parameters T, P and E do
not have units. A quantitative comparison between the
present calculation and experimental data is not allowed
in the present work.

For a detailed discussion on the parameter bm, readers
may refer to Ref. [21]. It is assumed that both the sign
and magnitude of bm may be defect-dependent and vary
from site to site. Take a defective site i as an example to
illustrate how to characterize the role of the defect. If bm is
positive, one expects A1(ri) at local site i may be positive,
which implies a local stable PE state rather than stable
FE state, i.e. the defect will suppress the appearance of a
local dipole. A FE state is preferred at site i if bm<0, i.e.
the local dipole is enhanced by the defect. The higher the

value of |bm|, the more significant the effect of the defect
at site i. In the present simulation, the magnitude of bm is
randomly taken within [0.5bM , bM] where bM is the given
maximum value of bm. Here, the two types of defects to
be considered in the simulation are characterized by the
parameter bm. For type-I defects, bm > 0 for all defects,
i.e. all defects will have a role of suppressing the local
dipole. For type-II defects, we define another parameter
Cp. CpC0L2 sites with defects of bm<0 (enhancing the
local dipoles) are imposed randomly to the lattice and (1-
Cp)C0L2 sites with defects of bm > 0 (suppressing the local
dipoles) are imposed randomly to the lattice. Of course,
one may consider the third case where all defects can
enhance the local dipole at the defective sites. However, it
is expected that this type of defects plays a role opposite
to that of the type-I defects. Thus, this case will not be
considered here.

2.3. Monte Carlo simulation
Given a set of system parameters, we first simulate the
equilibrium domain configuration of the lattice by em-
ploying the Metropolis MC algorithm. Subsequently, we
present a discussion on the simulation algorithm of di-
electric susceptibility under a weak external electric field.
For a lattice, each site is assigned a dipole with moment P
being chosen in the range of 0–1.0, and orientation being
one of the Q states, respectively. Also, a defect is attached
to a site and the probability is determined by C0. A random
number R1 is generated and a defect is attached to this site
if R1<C0, and is not attached otherwise. Here it should
be mentioned that the actual defect concentration in the
lattice is slightly smaller than C0 since the Monte Carlo
sequence is statistical. However, since L = 64 is large
enough the as-induced error in the defect concentration
from C0 is negligible. The simulation begins at an ex-
tremely high T = 14.0 at which no freezing effect occurs
within the period of simulation (we choose T0 = 4.0). For
a site i chosen at random, fL, fG, fdip and fE are calculated,
respectively, and then the value of H is obtained. Now,
this site is assigned another dipole with its moment and
orientation taken randomly. Subsequently, H is calculated
again to compare with the value of H in the original state,
and the difference between them is assumed to be �H. A
probability p is calculated by the Metropolis algorithm:

p = exp

(
−�H

kT

)
(9)

where k is the Boltzmann constant. A second random
number R2 is generated and compared with p. If R2<p, the
assumed event above is approved and this dipole at site i is
imposed, otherwise, the original state remains unchanged.
Then one cycle of simulation is completed and a new cy-
cle is initiated until a given number of cycles has been
completed. The time of simulation is scaled by the Monte
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Carlo step (mcs) and one mcs represents L×L cycles. In
our simulation, at each temperature, the initial 600mcs
runs are done and then the configuration averaging is per-
formed over the subsequent 2500mcs. Note here that for
relaxor systems the short time Monte Carlo simulation can
give sufficiently accurate agreement with experiments [8].
The data presented below represent an averaging over four
runs with different seeds for random number generator of
the initial lattice and defect distribution.

Besides the lattice average polarization and the energy
terms as shown in Equations 1–4, one can also evaluate
the dielectric susceptibility. The susceptibility is evalu-
ated by applying a weak time-varying external field E of
amplitude E0 and frequency ω: E = E0sin(2πω·t). Since E
is time-dependent, the kinetic MC algorithm is performed
by the sequence of dipole-exchange between two nearest-
neighboring sites with the dipole magnitude determined
by the local environment instead of dipole flip sequence
employed in the Metropolis algorithm. Such an exchange
does not imply any exchange of the defect state. It means
the defect distribution in the lattice remains unchanged
during the simulation. Under an external ac-electric field
E, the lattice dielectric susceptibility χ can be written as
[8]:

χ ′ = C

N T

〈
N∑

i

1

1 + (ω · τ/ω0)2

〉

χ ′′ = C

N T

〈
N∑

i

ω · τ/ω0

1 + (ω · τ/ω0)2

〉

(10)

where <> represents the configuration averaging, χ ′ and
χ ′′ are the real and imaginary parts of χ (we focus solely
on the real part), ω0 is the polariton frequency which is
a material constant, τ is the averaged time for dipole-
exchange between any nearest-neighboring dipole-pair,
which is scaled by ω0, N = L2 and C is a temperature-
independent constant. In our simulation here, ω0 = 1
is assumed for simplification. For any dipole-exchange
event, the system energy difference �H after and before
the assumed exchange is calculated and the probability p
approving such an exchange is determined by:

p = exp

(
−�H

kT

)
(11)

The simulation is performed by the following proce-
dure. The equilibrium lattice configuration is taken as the
input lattice. For a site i, one of its four nearest-neighbors,
site j, chosen in random, is paired with site i to perform the
dipole-exchange. However, the magnitude of each dipole
is re-valued after the assumed exchange. The value of �H
of this assumed exchange is calculated and the probability
for such an exchange is evaluated using Equation 11.

T AB L E I System parameters used in the simulation

Parameter Value Parameter Value Parameter Value

T0 4.0 α 1.0 A11 –0.5
A12 9.0 A111 0.8 G11 1.0
G14 0.2 G44 1.0 L 64
bM 6.0 C0 0∼1.0 R 8

A random number is generated and compared with this
probability to decide whether such an assumed exchange
is approved or not. This process is repeated until a given
number of simulation steps (mcs) is reached. For a site i,
if m successful dipole-exchange events are counted in M
mcs of simulation, as long as M is big enough, time τ =
M/m because τ is the averaged time for dipole-exchange
between any nearest-neighboring dipole-pair. Then the
dielectric susceptibility is evaluated using Equation 10.

2.4. Choice of system parameters
In the simulation, bm and C0 are treated as variables. The
other parameters are chosen and the dimensionless nor-
malization of them is done following the work of Hu et al.
on BaTiO3 system [26]. Such a choice is somewhat arbi-
trary since we are not focusing on any realistic system in a
quantitative sense. These parameters are given in Table I.
In the following simulation, the normal ferroelectric lat-
tice is named as the normal lattice, while the lattice with
type-I defects or type-II defects is called the defective
lattice.

3. Lattice dipole configuration of normal lattice
3.1. Lattice configuration at Q = 4
We first look at the simulated dipole configuration of the
normal lattice (C0 = 0.0). Fig. 2 shows the simulated pat-
terns at several temperatures for Q = 4, where the length
and direction of arrows represent the moment and orienta-
tion of dipoles. For a clarification of the dipole alignment,
only part of each lattice is shown. At high T = 12.0 and 6.0,
the moment of all dipoles is very small and their alignment
is disordered, a typical PE configuration. As T becomes
close to T0 (T = 4.0), the dipole moment is still small
and no long-range dipole order is found either, although
a small dipole-ordered region is observed on the top-right
corner.

Once T is below T0 (T = 3.0), the ferroelectric phase
transition occurs and the disordered dipole alignment
evolves into a long-range ordered structure. A clear
ferroelectric multi-domain configuration is formed with
the well-predicted head-to-tail dipole alignment and
preferred 90◦ domain walls. Those dipoles on the domain
walls are still small in moment and their alignment
remains partially disordered. At a low T (T = 1.0), the de-
gree of disordering on the walls is significantly suppressed
and an almost perfect multi-domain lattice is observed.
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Figure 2 Simulated dipole configuration of normal ferroelectric lattice at different temperatures T (Q = 4). C0 = 0.

As for the domain configuration, one may find that
most of the domains are 90◦-type rather than 180◦-type.
However, in the dipole configurations shown above, the
180◦-domain walls are still observed. One reason for less
180◦-domain walls may be due to the energy landscape
in which the 90◦-walls are preferred than the 180◦-walls
in the present model. In fact, if smaller G11, G12, G44 and
G′

44 are chosen so that a smaller fG is obtained, i.e. lower
domain wall gradient energy is imposed, many more
180◦-walls than 90◦-walls are observable.

3.2. Lattice configuration at Q > 4
When the allowed number of dipole orientations Q >

4, the lattice configuration is also simulated, and the
simulated dipole alignment patterns at T = 0.5 are

presented in Fig. 3 (Q = 4, 8, 16). For all cases, the lattice
is completely disordered at T > T0, i.e. the lattice is in
the paraelectric state and all the allowed states of dipole
orientation are chosen (patterns not shown here). While
almost the same domain pattern is shown for lattices
of different Q, the dipole alignment on the 90◦-walls is
Q-dependent. At Q = 4, the 90◦-wall is almost perfect
with the head-to-tail dipoles aligning perpendicular to
each other. For Q = 8, most dipoles on the walls have
[11] orientations instead of [1,0] or [0,1] orientations.
We name these alignment states the distorted states
while the four ±[1,0] and ±[0,1] states are viewed as
normal states. At Q = 16, almost all dipoles on the walls
deviate from the [1,0] and [0,1] orientations and prefer
the distorted states which have a higher fL. Therefore, in
the Ginzburg-Landau model the four ±[1,0] and ±[0,1]
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Figure 3 Simulated dipole configuration of normal ferroelectric lattices
with different values of Q at T = 0.5. C0 = 0.

orientations (Q = 4) may not be the unique choices for the
dipoles.

As shown above, all dipoles except those on the walls
still take one of the four ±[1,0] and ±[0,1] orientations
no matter how large the value of Q is in the simulation.
This behavior can be explained by the symmetry of the
Landau potential Equation 1. With the parameters given
in Table I, we calculate the Landau potential Fld as a
function of (Px, Py) at T = 0.5 and T = 5.0, as shown
in Fig. 4a and b, respectively. The square symmetry of
Fld(Px, Py) at low T, characterized by the four symmetric
energy minimals, is clearly shown, which is independent
of Q. The result implies that the preferred dipole orienta-
tion states are ±[0,1] and ±[1,0] irrespective of the value
of Q. At high T, Fld(Px, Py) still shows the square symme-

Figure 4 Equi-potential contour of the Landau potential fL as a function of
the dipole moment components Px and Py at (a) T = 0.5 and (b) T = 4.0.
The numbers inserted in the plots are the values of fL.

try although the energy minimum is located at the zero-
point (Px = Py = 0), i.e. the lattice is in the paraelectric
state.

In the following simulation for the defective lattice, we
fix Q = 4 and the effect of varying Q is no longer taken
into account.

4. Dipole configuration in defective lattices
4.1. Dipole configuration in a lattice with

type-I defects
We look at the dipole alignment in the lattice at different T
for C0 = 0.5 and Cp = 0.0 (with type-I defects), as shown
in Fig. 5. The type-I defects intrinsically suppress the
local dipoles. At high T, the lattice is obviously in the PE
state and no long-range ordered dipole alignment is seen.
With decreasing T, the lattice becomes inhomogeneous
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Figure 5 Simulated dipole configuration of a ferroelectric lattice with type-I defects at different temperatures T (C0 = 0.5, Cp = 0.0, Q = 4). The values
of T are inserted in figures.

and some FE ordered regions are observed. With further
decreasing of T, these FE ordered regions grow in size and
new FE regions appear. At low T, the lattice has a two-
phase coexisted microstructure consisting of FE phase
embedded in the matrix of PE phase, a typical picture for
RFEs.

Given a temperature T = 1.0, the lattice dipole configu-
ration with increasing C0 is shown in Fig. 6. For a small C0

(C0 = 0.2), the lattice inhomogeneity is already remark-
able and the decrease in moment (depolarization effect)
of the dipoles along the domain walls becomes signifi-
cant although the defects are randomly distributed. These
regions can be viewed as the non-ferroelectric phase or
simply the PE phase. With increasing C0, the FE regions
continue to shrink both in size and in volume fraction. It is
seen that only very small dipole clusters exist at C0 = 0.5.
As C0 = 0.8, the FE phase in the lattice nearly disappears
and the whole lattice becomes paraelectric.

4.2. Dipole configuration in a lattice type-II
defects

When type-II defects are introduced into the normal lat-
tice, one sees a dipole configuration quite different from
that of the type-I defects. The simulated dipole alignment
patterns for C0 = 0.5 (Cp = 0.5) at different tempera-

tures are shown in Fig. 7. We indeed find that there are
some small-sized areas in which the dipole alignment is
ordered at T = 6.0, i.e. some local clusters of ordered
dipoles form at T > T0. At T = 4.0, this clustering ten-
dency becomes more significant. The number and size
of the clusters increase with decreasing T. On the other
hand, at T just below T0, we do not see a perfect long-
range ordered dipole configuration, while the lattice still
consists of areas of ordered dipoles embedded in a ma-
trix of paraelectric phase. With further decreasing of T, a
gradual growth and coalescence of these ordered clusters
is observed, and the simulated lattice at very low tem-
perature has a configuration approaching that of a normal
ferroelectric.

Obviously, the main configuration features described
above are similar to those of RFEs in which nano-polar
clusters are embedded in a PE matrix over a wide range
of temperature both above and below T0. The feature of
diffusive phase transition is clearly reproduced, indicating
that the present model works well in describing the mi-
crostructure of RFEs. It should be mentioned that in Fig. 7
the long-range ordered configuration is already well de-
veloped as T falls to T = 1.0, at which a well-defined
domain pattern can be identified although there still are
some small dipole-disordered zones inside the domains.
This configuration can be viewed as the frozen one, which
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Figure 6 Simulated dipole configuration of a ferroelectric lattice with type-I defects at different defect concentrations C0 (T = 1.0, Cp = 0.0, Q = 4). The
values of C0 are inserted in the figures.

reflects somehow the freezing behavior of relaxor ferro-
electrics with decreasing temperature [21]. However, this
freezing behavior is C0-dependent and the long-range or-
dered domains disappear when C0 is high. We simulate
the evolution of dipole configuration with different C0, as
shown in Fig. 8 (T = 3.0). Multi-domain configuration is
clearly seen at C0 = 0.0 and 0.2, but is no longer visible
at C0 = 0.5 and 0.8. Consequently, when C0 becomes
larger, the ferroelectric transition is not completed unless
T is lower. At any given temperature, the larger the value
of C0, the smaller the ordered clusters.

5. Ferroelectric and dielectric behaviors
of defective lattice

5.1. Ferroelectric behaviors
We also study the ferroelectric behaviors of the lattices
with the two types of defects, as a function of T and E.
The external field was fixed at ω = 0.002 mcs−1 and E0

= 4.0 for the simulations in this section. For the lattice
with type-I defects, the simulated P-E hysteresis loops
at T = 3.0 for different C0 are presented in Fig. 9a. It
is seen that the loop shrinks significantly along the P-
and E-axis as C0 increases. At C0 = 0.8 and 1.0, the
hysteresis loop becomes very thin, a typical feature of
RFEs at a temperature slightly below T0. Because the

loop area A represents the energy dissipated during one
cycle of domain reversal driven by the ac-electric field, it
can be used to scale the long-range correlation of dipoles
in the lattice. In Fig. 9b, the loop area A as a function of T
at various C0 is shown. Given the value of C0, A increases
rapidly with decreasing T, while for a given T, A decreases
with increasing C0. These results are consistent with the
behaviors of RFEs.

Nevertheless, for lattices with type-II defects, the sim-
ulated ferroelectric behaviors are very different, as shown
in Fig. 10a where the P-E hysteresis loops for different
C0 at T = 3.0 are given, and in Fig. 10b where the loop
area A for different C0 as a function of T is plotted. As
C0 (Cp = 0.5) varies over a broad range, the simulated
hysteresis loop does not change much but only shrinks
slightly along the P- and E-axis. Even at C0 = 1.0, the
lattice polarization P still has a large value. In Fig. 10b,
the loop area for C0>0 is slightly larger than that for the
normal FE lattice at T>T0, although it is slightly smaller
than that for the normal FE lattice at T<T0.

The significant difference in ferroelectric behaviors
between the lattices with the two different types of defects
originates from the fact that, for the lattice with type-II
defects, half of the defects enhance the local dipole mo-
ment, while for the lattice with type-I defects all defects
suppress the local dipole moments. Therefore, for the
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Figure 7 Simulated dipole configuration of a ferroelectric lattice with type-II defects at different temperatures T (C0 = 0.5, Cp = 0.5, Q = 4). The values
of T are inserted in figures.

lattice with type-II defects, some defective sites exhibit
even larger dipole moments than those of the normal
FE lattice sites at T>T0, although the other sites exhibit
smaller dipole moments, as shown in Fig. 8. These results
indicate that most RFEs studied experimentally are doped
with type-I defects which intrinsically suppress the local
dipole moments. This argument will gain further support
below in the discussion of the dielectric behavior.

5.2. Dielectric behaviors
The dielectric susceptibility χ as a function of T for dif-
ferent C0 under a given E (ω = 0.002mcs−1, E0 = 4.0) for

lattices with the two types of defects is evaluated, and the
results are plotted in Fig. 11a (lattice with type-I defects)
and 11b (lattice with type-II defects, Cp = 0.5), respec-
tively. It is seen that the introduction of defects affects
significantly the dielectric property of the system. At C0

= 0 (normal FE), a Curie-Weiss type single-peaked χ-
T relation is generated with Tc∼4.0. For the lattice with
type-I defects, as C0 increases, the single-peaked χ-T
curve shifts toward the low-T side and also downwards
slightly. In addition, the normal FE lattice shows a sharp
decrease in χ at a temperature just below Tc, but this fea-
ture is weakened for the lattice with defects, i.e. the FE
transition becomes diffused with increasing C0. For the
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Figure 8 Simulated dipole configuration of a ferroelectric lattice with type-II defects at different defect concentrations C0 (T = 1.0, Cp = 0.5, Q = 4). The
values of C0 are inserted in the figures.

lattice with type-II defects, with increasing C0, one sees
a remarkable broadening of the dielectric peak around
the transition point and the peak position shifts slightly
toward the high-T side. Over the high temperature range
(T>T0), χ ′ decreases slightly with increasing C0, while
over the low T range (T<T0) it increases slightly with C0.
When C0 is extremely large (C0 = 1.0), which means all
lattice sites are occupied by the defects, χ ′ does not ex-
hibit a peak around the transition point and it decreases
monotonously with decreasing T. This behavior has never
been observed experimentally and its significance is in
doubt. Therefore, it is believed that most RFEs under
conventional investigations are doped with type-I defects.
Finally, the dielectric behaviors for the two-types of defec-
tive lattices can be explained qualitatively by considering
the energy terms as a function of defect concentration
and details of the explanation can be found elsewhere
[22, 23].

5.3. Comparison with experiments
We have employed the defect model to simulate the
dipole configuration for lattices with two types of
randomly distributed defects. A qualitative comparison
of these simulated behaviors with experimental data
would help provide a justification for the defect model.

It has been repeatedly verified that tremendous variations
in microstructure and physical property of a variety of
ferroelectric polymers may be generated by irradiation
with high energy electrons or protons [18–20, 25].
Several experiments revealed that the high-energy
particles injected into the copolymers convert the single
FE-phase into a two-phase coexisted microstructure with
a FE phase and a PE phase. In fact, one may argue that
the high energy particle irradiation introduces randomly
distributed point-like defects into the sample and disrupts
the stability of the FE phase. The microstructural details
are determined by the energy level and the dose of the
particles. At a given energy level, the defect concentration
C0 is directly related to the dose of irradiation.

The above argument provides justification for the appli-
cation of the present model to explain the results of the ir-
radiation experiments. While several careful experiments
on the effect of irradiation had been performed, in this
section, we compare our model simulation with our earlier
experiments on the dielectric susceptibility of proton-
irradiated poly (vinylidene fluoride-trifluoroethylene)
70/30 mol% copolymer (P(VDF-TrFE)). For details of
the experiments, please refer to our earlier report [25].

Fig. 11c shows the measured dielectric constant at
1MHz as a function of T in a cooling run for several
samples with the same initial state but irradiated at
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Figure 9 (a) Simulated ferroelectric hysteresis loops for a lattice with type-
I defects at different defect concentrations C0, (b) loop area A at different
defect concentrations C0 as a function of temperature T. E0 = 4.0 and ω =
0.002 mcs−1.

Figure 10 (a) Simulated ferroelectric hysteresis loops for a lattice with
type-II defects at different defect concentrations C0, (b) loop area A at
different defect concentration C0 as a function of temperature T. Cp = 0.5,
E0 = 4.0 and ω = 0.002 mcs−1.

Figure 11 Simulated dielectric susceptibility χ ′ as a function of tempera-
ture T at different defect concentration C0, for (a) lattice with type-I defects
and (b) lattice with type-II defects (E0 = 4.0 and ω = 0.002 mcs−1), and
(c) relative dielectric permittivity χ measured at 1 MHz as a function of
temperature T for P(VDF-TrFE) 70/30 mol% copolymer samples irradiated
with different proton doses in a cooling run.

different dose levels. While the non-irradiated sample
shows the typical first-order FE phase transitions at
70◦C, the irradiated samples exhibit a broader transition
peak and the peak height becomes smaller and the peak
position shifts to a lower T, as the irradiation dose
increases. These features are well reproduced in our
simulations on the lattice with type-I defects, as shown
in Fig. 11a. In fact, hysteresis measurements indicated
that a relaxor-like two-phase microstructure is formed
in irradiated ferroelectric copolymers, and the measured
hysteresis loops are quite similar to the simulated ones
shown in Fig. 9. What should be mentioned here is that
the shift of the peak position becomes quite small when
the dose is higher than 150Mrad and this is not consistent
with our simulations where a significant shift continues
at a very high defect concentration (C0 > 0.6).
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6. Conclusions
In conclusion, we have presented a Monte Carlo sim-
ulation on the dielectric and ferroelectric properties
of ferroelectric lattices with two-types of randomly
distributed point-like defects and compared the simulated
results with the properties of proton-irradiated copolymer
(P(VDF-TrFE)). The algorithm of simulation is based on
the Ginzburg-Landau theory for first-order ferroelectric
phase transition with the inclusion of the contributions
from dipole-dipole interaction, gradient energy and
electrostatic energy. The simulation has revealed that the
introduction of the two types of lattice defects results in
an evolution of the dipole configuration from a normal
multi-domain ferroelectric lattice to a relaxor-like two-
phase coexisted microstructure consisting of ferroelectric
regions embedded in the matrix of a paraelectric phase.
The dielectric susceptibility as a function of defect
concentration has been simulated and the simulated
results are very similar to those observed for relaxor
ferroelectrics.
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